Skip to main content

SignalWire AI Agents SDK - Complete API Reference

This document provides a comprehensive reference for all public APIs in the SignalWire AI Agents SDK.


AgentBase Class

The AgentBase class is the foundation for creating AI agents. It extends SWMLService and provides comprehensive functionality for building conversational AI agents.

Constructor

AgentBase(
name: str,
route: str = "/",
host: str = "0.0.0.0",
port: int = 3000,
basic_auth: Optional[Tuple[str, str]] = None,
use_pom: bool = True,
enable_state_tracking: bool = False,
token_expiry_secs: int = 3600,
auto_answer: bool = True,
record_call: bool = False,
record_format: str = "mp4",
record_stereo: bool = True,
state_manager: Optional[StateManager] = None,
default_webhook_url: Optional[str] = None,
agent_id: Optional[str] = None,
native_functions: Optional[List[str]] = None,
schema_path: Optional[str] = None,
suppress_logs: bool = False,
enable_post_prompt_override: bool = False,
check_for_input_override: bool = False
)

Parameters:

  • name (str): Human-readable name for the agent
  • route (str): HTTP route path for the agent (default: "/")
  • host (str): Host address to bind to (default: "0.0.0.0")
  • port (int): Port number to listen on (default: 3000)
  • basic_auth (Optional[Tuple[str, str]]): Username/password for HTTP basic auth
  • use_pom (bool): Whether to use Prompt Object Model (default: True)
  • enable_state_tracking (bool): Enable persistent state management (default: False)
  • token_expiry_secs (int): Security token expiration time (default: 3600)
  • auto_answer (bool): Automatically answer incoming calls (default: True)
  • record_call (bool): Record calls by default (default: False)
  • record_format (str): Recording format: "mp4", "wav", "mp3" (default: "mp4")
  • record_stereo (bool): Record in stereo (default: True)
  • state_manager (Optional[StateManager]): Custom state manager instance
  • default_webhook_url (Optional[str]): Default webhook URL for functions
  • agent_id (Optional[str]): Unique identifier for the agent
  • native_functions (Optional[List[str]]): List of native function names to enable
  • schema_path (Optional[str]): Path to custom SWML schema file
  • suppress_logs (bool): Suppress logging output (default: False)
  • enable_post_prompt_override (bool): Allow post-prompt URL override (default: False)
  • check_for_input_override (bool): Allow check-for-input URL override (default: False)

Core Methods

Deployment and Execution

run(event=None, context=None, force_mode=None, host=None, port=None)

Auto-detects deployment environment and runs the agent appropriately.

Parameters:

  • event: Event object for serverless environments
  • context: Context object for serverless environments
  • force_mode (str): Force specific mode: "server", "lambda", "cgi", "cloud_function"
  • host (Optional[str]): Override host address
  • port (Optional[int]): Override port number

Usage:

# Auto-detect environment
agent.run()

# Force server mode
agent.run(force_mode="server", host="localhost", port=8080)

# Lambda handler
def lambda_handler(event, context):
return agent.run(event, context)
serve(host=None, port=None)

Explicitly run as HTTP server using FastAPI/Uvicorn.

Parameters:

  • host (Optional[str]): Host address to bind to
  • port (Optional[int]): Port number to listen on

Usage:

agent.serve()  # Use constructor defaults
agent.serve(host="0.0.0.0", port=3000)

Prompt Configuration

Text-Based Prompts

set_prompt_text(text: str) -> AgentBase

Set the agent's prompt as raw text.

Parameters:

  • text (str): The complete prompt text

Usage:

agent.set_prompt_text("You are a helpful customer service agent.")
set_post_prompt(text: str) -> AgentBase

Set additional text to append after the main prompt.

Parameters:

  • text (str): Text to append after main prompt

Usage:

agent.set_post_prompt("Always be polite and professional.")

Structured Prompts (POM)

prompt_add_section
def prompt_add_section(
title: str,
body: str = "",
bullets: Optional[List[str]] = None,
numbered: bool = False,
numbered_bullets: bool = False,
subsections: Optional[List[Dict[str, Any]]] = None
) -> AgentBase

Add a structured section to the prompt using Prompt Object Model.

Parameters:

  • title (str): Section title/heading
  • body (str): Main section content (default: "")
  • bullets (Optional[List[str]]): List of bullet points
  • numbered (bool): Use numbered sections (default: False)
  • numbered_bullets (bool): Use numbered bullet points (default: False)
  • subsections (Optional[List[Dict]]): Nested subsections

Usage:

# Simple section
agent.prompt_add_section("Role", "You are a customer service representative.")

# Section with bullets
agent.prompt_add_section(
"Guidelines",
"Follow these principles:",
bullets=["Be helpful", "Stay professional", "Listen carefully"]
)

# Numbered bullets
agent.prompt_add_section(
"Process",
"Follow these steps:",
bullets=["Greet the customer", "Identify their need", "Provide solution"],
numbered_bullets=True
)
prompt_add_to_section
def prompt_add_to_section(
title: str,
body: Optional[str] = None,
bullet: Optional[str] = None,
bullets: Optional[List[str]] = None
) -> AgentBase

Add content to an existing prompt section.

Parameters:

  • title (str): Title of existing section to modify
  • body (Optional[str]): Additional body text to append
  • bullet (Optional[str]): Single bullet point to add
  • bullets (Optional[List[str]]): Multiple bullet points to add

Usage:

# Add body text to existing section
agent.prompt_add_to_section("Guidelines", "Remember to always verify customer identity.")

# Add single bullet
agent.prompt_add_to_section("Process", bullet="Document the interaction")

# Add multiple bullets
agent.prompt_add_to_section("Process", bullets=["Follow up", "Close ticket"])
prompt_add_subsection
def prompt_add_subsection(
parent_title: str,
title: str,
body: str = "",
bullets: Optional[List[str]] = None
) -> AgentBase

Add a subsection to an existing prompt section.

Parameters:

  • parent_title (str): Title of parent section
  • title (str): Subsection title
  • body (str): Subsection content (default: "")
  • bullets (Optional[List[str]]): Subsection bullet points

Usage:

agent.prompt_add_subsection(
"Guidelines",
"Escalation Rules",
"Escalate when:",
bullets=["Customer is angry", "Technical issue beyond scope"]
)

Voice and Language Configuration

add_language
def add_language(
name: str,
code: str,
voice: str,
speech_fillers: Optional[List[str]] = None,
function_fillers: Optional[List[str]] = None,
engine: Optional[str] = None,
model: Optional[str] = None
) -> AgentBase

Configure voice and language settings for the agent.

Parameters:

  • name (str): Human-readable language name
  • code (str): Language code (e.g., "en-US", "es-ES")
  • voice (str): Voice identifier (e.g., "rime.spore", "nova.luna")
  • speech_fillers (Optional[List[str]]): Filler phrases during speech processing
  • function_fillers (Optional[List[str]]): Filler phrases during function execution
  • engine (Optional[str]): TTS engine to use
  • model (Optional[str]): AI model to use

Usage:

# Basic language setup
agent.add_language("English", "en-US", "rime.spore")

# With custom fillers
agent.add_language(
"English",
"en-US",
"nova.luna",
speech_fillers=["Let me think...", "One moment..."],
function_fillers=["Processing...", "Looking that up..."]
)
set_languages(languages: List[Dict[str, Any]]) -> AgentBase

Set multiple language configurations at once.

Parameters:

  • languages (List[Dict]): List of language configuration dictionaries

Usage:

agent.set_languages([
{"name": "English", "code": "en-US", "voice": "rime.spore"},
{"name": "Spanish", "code": "es-ES", "voice": "nova.luna"}
])

Speech Recognition Configuration

add_hint(hint: str) -> AgentBase

Add a single speech recognition hint.

Parameters:

  • hint (str): Word or phrase to improve recognition accuracy

Usage:

agent.add_hint("SignalWire")
add_hints(hints: List[str]) -> AgentBase

Add multiple speech recognition hints.

Parameters:

  • hints (List[str]): List of words/phrases for better recognition

Usage:

agent.add_hints(["SignalWire", "SWML", "API", "webhook", "SIP"])
add_pattern_hint
def add_pattern_hint(
hint: str,
pattern: str,
replace: str,
ignore_case: bool = False
) -> AgentBase

Add a pattern-based hint for speech recognition.

Parameters:

  • hint (str): The hint phrase
  • pattern (str): Regex pattern to match
  • replace (str): Replacement text
  • ignore_case (bool): Case-insensitive matching (default: False)

Usage:

agent.add_pattern_hint(
"phone number",
r"(\d{3})-(\d{3})-(\d{4})",
r"(\1) \2-\3"
)
add_pronunciation
def add_pronunciation(
replace: str,
with_text: str,
ignore_case: bool = False
) -> AgentBase

Add pronunciation rules for text-to-speech.

Parameters:

  • replace (str): Text to replace
  • with_text (str): Replacement pronunciation
  • ignore_case (bool): Case-insensitive replacement (default: False)

Usage:

agent.add_pronunciation("API", "A P I")
agent.add_pronunciation("SWML", "swim-el")
set_pronunciations
def set_pronunciations(
pronunciations: List[Dict[str, Any]]
) -> AgentBase

Set multiple pronunciation rules at once.

Parameters:

  • pronunciations (List[Dict]): List of pronunciation rule dictionaries

Usage:

agent.set_pronunciations([
{"replace": "API", "with": "A P I"},
{"replace": "SWML", "with": "swim-el", "ignore_case": True}
])

AI Parameters Configuration

set_param(key: str, value: Any) -> AgentBase

Set a single AI parameter.

Parameters:

  • key (str): Parameter name
  • value (Any): Parameter value

Usage:

agent.set_param("ai_model", "gpt-4.1-nano")
agent.set_param("end_of_speech_timeout", 500)
set_params(params: Dict[str, Any]) -> AgentBase

Set multiple AI parameters at once.

Parameters:

  • params (Dict[str, Any]): Dictionary of parameter key-value pairs

Common Parameters:

  • ai_model: AI model to use ("gpt-4.1-nano", "gpt-4.1-mini", etc.)
  • end_of_speech_timeout: Milliseconds to wait for speech end (default: 1000)
  • attention_timeout: Milliseconds before attention timeout (default: 30000)
  • background_file_volume: Volume for background audio (-60 to 0 dB)
  • temperature: AI creativity/randomness (0.0 to 2.0)
  • max_tokens: Maximum response length
  • top_p: Nucleus sampling parameter (0.0 to 1.0)

Usage:

agent.set_params({
"ai_model": "gpt-4.1-nano",
"end_of_speech_timeout": 500,
"attention_timeout": 15000,
"background_file_volume": -20,
"temperature": 0.7
})

Global Data Management

set_global_data(data: Dict[str, Any]) -> AgentBase

Set global data available to the AI and functions.

Parameters:

  • data (Dict[str, Any]): Global data dictionary

Usage:

agent.set_global_data({
"company_name": "Acme Corp",
"support_hours": "9 AM - 5 PM EST",
"escalation_number": "+1-555-0123"
})
update_global_data(data: Dict[str, Any]) -> AgentBase

Update existing global data (merge with existing).

Parameters:

  • data (Dict[str, Any]): Data to merge with existing global data

Usage:

agent.update_global_data({
"current_promotion": "20% off all services",
"promotion_expires": "2024-12-31"
})

Function Definition

define_tool
def define_tool(
name: str,
description: str,
parameters: Dict[str, Any],
handler: Callable,
secure: bool = True,
fillers: Optional[Dict[str, List[str]]] = None,
webhook_url: Optional[str] = None,
**swaig_fields
) -> AgentBase

Define a custom SWAIG function/tool.

Parameters:

  • name (str): Function name
  • description (str): Function description for AI
  • parameters (Dict[str, Any]): JSON schema for function parameters
  • handler (Callable): Function to execute when called
  • secure (bool): Require security token (default: True)
  • fillers (Optional[Dict[str, List[str]]]): Language-specific filler phrases
  • webhook_url (Optional[str]): Custom webhook URL
  • **swaig_fields: Additional SWAIG function properties

Usage:

def get_weather(args, raw_data):
location = args.get("location", "Unknown")
return SwaigFunctionResult(f"The weather in {location} is sunny and 75°F")

agent.define_tool(
name="get_weather",
description="Get current weather for a location",
parameters={
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "City name"
}
},
"required": ["location"]
},
handler=get_weather,
fillers={"en-US": ["Checking weather...", "Looking up forecast..."]}
)
@AgentBase.tool(name=None, **kwargs) (Class Decorator)

Decorator for defining tools as class methods.

Parameters:

  • name (Optional[str]): Function name (defaults to method name)
  • **kwargs: Same parameters as define_tool()

Usage:

class MyAgent(AgentBase):
@AgentBase.tool(
description="Get current time",
parameters={"type": "object", "properties": {}}
)
def get_time(self, args, raw_data):
import datetime
return SwaigFunctionResult(f"Current time: {datetime.datetime.now()}")
register_swaig_function
def register_swaig_function(
function_dict: Dict[str, Any]
) -> AgentBase

Register a pre-built SWAIG function dictionary.

Parameters:

  • function_dict (Dict[str, Any]): Complete SWAIG function definition

Usage:

# Register a DataMap tool
weather_tool = DataMap('get_weather').webhook('GET', 'https://api.weather.com/...')
agent.register_swaig_function(weather_tool.to_swaig_function())

Skills System

add_skill
def add_skill(
skill_name: str,
params: Optional[Dict[str, Any]] = None
) -> AgentBase

Add a modular skill to the agent.

Parameters:

  • skill_name (str): Name of the skill to add
  • params (Optional[Dict[str, Any]]): Skill configuration parameters

Available Skills:

  • datetime: Current date/time information
  • math: Mathematical calculations
  • web_search: Google Custom Search integration
  • datasphere: SignalWire DataSphere search
  • native_vector_search: Local document search

Usage:

# Simple skill
agent.add_skill("datetime")
agent.add_skill("math")

# Skill with configuration
agent.add_skill("web_search", {
"api_key": "your-google-api-key",
"search_engine_id": "your-search-engine-id",
"num_results": 3
})

# Multiple instances with different names
agent.add_skill("web_search", {
"api_key": "your-api-key",
"search_engine_id": "general-engine",
"tool_name": "search_general"
})

agent.add_skill("web_search", {
"api_key": "your-api-key",
"search_engine_id": "news-engine",
"tool_name": "search_news"
})
remove_skill(skill_name: str) -> AgentBase

Remove a skill from the agent.

Parameters:

  • skill_name (str): Name of skill to remove

Usage:

agent.remove_skill("web_search")
list_skills() -> List[str]

Get list of currently added skills.

Returns:

  • List[str]: Names of active skills

Usage:

active_skills = agent.list_skills()
print(f"Active skills: {active_skills}")
has_skill(skill_name: str) -> bool

Check if a skill is currently added.

Parameters:

  • skill_name (str): Name of skill to check

Returns:

  • bool: True if skill is active

Usage:

if agent.has_skill("web_search"):
print("Web search is available")

Native Functions

set_native_functions
def set_native_functions(
function_names: List[str]
) -> AgentBase

Enable specific native SWML functions.

Parameters:

  • function_names (List[str]): List of native function names to enable

Available Native Functions:

  • transfer: Transfer calls
  • hangup: End calls
  • play: Play audio files
  • record: Record audio
  • send_sms: Send SMS messages

Usage:

agent.set_native_functions(["transfer", "hangup", "send_sms"])
set_internal_fillers
def set_internal_fillers(
internal_fillers: Dict[str, Dict[str, List[str]]]
) -> AgentBase

Set custom filler phrases for internal/native SWAIG functions.

Parameters:

  • internal_fillers (Dict[str, Dict[str, List[str]]]): Function name → language code → filler phrases

Available Internal Functions:

  • next_step: Moving between workflow steps (contexts system)
  • change_context: Switching contexts in workflows
  • check_time: Getting current time
  • wait_for_user: Waiting for user input
  • wait_seconds: Pausing for specified duration
  • get_visual_input: Processing visual data

Usage:

agent.set_internal_fillers({
"next_step": {
"en-US": ["Moving to the next step...", "Let's continue..."],
"es": ["Pasando al siguiente paso...", "Continuemos..."]
},
"check_time": {
"en-US": ["Let me check the time...", "Getting current time..."]
}
})
add_internal_filler
def add_internal_filler(
function_name: str,
language_code: str,
fillers: List[str]
) -> AgentBase

Add internal fillers for a specific function and language.

Parameters:

  • function_name (str): Name of the internal function
  • language_code (str): Language code (e.g., "en-US", "es", "fr")
  • fillers (List[str]): List of filler phrases

Usage:

agent.add_internal_filler("next_step", "en-US", [
"Great! Let's move to the next step...",
"Perfect! Moving forward..."
])

Function Includes

add_function_include
def add_function_include(
url: str,
functions: List[str],
meta_data: Optional[Dict[str, Any]] = None
) -> AgentBase

Include external SWAIG functions from another service.

Parameters:

  • url (str): URL of external SWAIG service
  • functions (List[str]): List of function names to include
  • meta_data (Optional[Dict[str, Any]]): Additional metadata

Usage:

agent.add_function_include(
"https://external-service.com/swaig",
["external_function1", "external_function2"],
meta_data={"service": "external", "version": "1.0"}
)
set_function_includes
def set_function_includes(
includes: List[Dict[str, Any]]
) -> AgentBase

Set multiple function includes at once.

Parameters:

  • includes (List[Dict[str, Any]]): List of function include configurations

Usage:

agent.set_function_includes([
{
"url": "https://service1.com/swaig",
"functions": ["func1", "func2"]
},
{
"url": "https://service2.com/swaig",
"functions": ["func3"],
"meta_data": {"priority": "high"}
}
])

Webhook Configuration

set_web_hook_url(url: str) -> AgentBase

Set default webhook URL for SWAIG functions.

Parameters:

  • url (str): Default webhook URL

Usage:

agent.set_web_hook_url("https://myserver.com/webhook")
set_post_prompt_url(url: str) -> AgentBase

Set URL for post-prompt processing.

Parameters:

  • url (str): Post-prompt webhook URL

Usage:

agent.set_post_prompt_url("https://myserver.com/post-prompt")

Dynamic Configuration

set_dynamic_config_callback
def set_dynamic_config_callback(
callback: Callable[[dict, dict, dict, EphemeralAgentConfig], None]
) -> AgentBase

Set callback for per-request dynamic configuration.

Parameters:

  • callback (Callable): Function that receives (query_params, headers, body, config)

Usage:

def configure_agent(query_params, headers, body, config):
# Configure based on request
if query_params.get("language") == "spanish":
config.add_language("Spanish", "es-ES", "nova.luna")

# Set customer-specific data
customer_id = headers.get("X-Customer-ID")
if customer_id:
config.set_global_data({"customer_id": customer_id})

agent.set_dynamic_config_callback(configure_agent)

SIP Integration

enable_sip_routing
def enable_sip_routing(
auto_map: bool = True,
path: str = "/sip"
) -> AgentBase

Enable SIP-based routing for voice calls.

Parameters:

  • auto_map (bool): Automatically map SIP usernames (default: True)
  • path (str): SIP routing endpoint path (default: "/sip")

Usage:

agent.enable_sip_routing()
register_sip_username(sip_username: str) -> AgentBase

Register a specific SIP username for this agent.

Parameters:

  • sip_username (str): SIP username to register

Usage:

agent.register_sip_username("support")
agent.register_sip_username("sales")
register_routing_callback
def register_routing_callback(
callback_fn: Callable[[Request, Dict[str, Any]], Optional[str]],
path: str = "/sip"
) -> None

Register custom routing logic for SIP calls.

Parameters:

  • callback_fn (Callable): Function that returns agent route based on request
  • path (str): Routing endpoint path (default: "/sip")

Usage:

def route_call(request, body):
sip_username = body.get("sip_username")
if sip_username == "support":
return "/support-agent"
elif sip_username == "sales":
return "/sales-agent"
return None

agent.register_routing_callback(route_call)

Utility Methods

get_name() -> str

Get the agent's name.

Returns:

  • str: Agent name
get_app()

Get the FastAPI application instance.

Returns:

  • FastAPI: The underlying FastAPI app
as_router() -> APIRouter

Get the agent as a FastAPI router for embedding in larger applications.

Returns:

  • APIRouter: FastAPI router instance

Usage:

# Embed agent in larger FastAPI app
main_app = FastAPI()
agent_router = agent.as_router()
main_app.include_router(agent_router, prefix="/agent")

Event Handlers

on_summary
def on_summary(
summary: Optional[Dict[str, Any]],
raw_data: Optional[Dict[str, Any]] = None
) -> None

Override to handle conversation summaries.

Parameters:

  • summary (Optional[Dict[str, Any]]): Summary data
  • raw_data (Optional[Dict[str, Any]]): Raw request data

Usage:

class MyAgent(AgentBase):
def on_summary(self, summary, raw_data):
print(f"Conversation summary: {summary}")
# Save to database, send notification, etc.
on_function_call
def on_function_call(
name: str,
args: Dict[str, Any],
raw_data: Optional[Dict[str, Any]] = None
) -> Any

Override to handle function calls with custom logic.

Parameters:

  • name (str): Function name being called
  • args (Dict[str, Any]): Function arguments
  • raw_data (Optional[Dict[str, Any]]): Raw request data

Returns:

  • Any: Function result (typically SwaigFunctionResult)

Usage:

class MyAgent(AgentBase):
def on_function_call(self, name, args, raw_data):
if name == "get_weather":
location = args.get("location")
# Custom weather logic
return SwaigFunctionResult(f"Weather in {location}: Sunny")
return super().on_function_call(name, args, raw_data)
on_request
def on_request(
request_data: Optional[dict] = None,
callback_path: Optional[str] = None
) -> Optional[dict]

Override to handle general requests.

Parameters:

  • request_data (Optional[dict]): Request data
  • callback_path (Optional[str]): Callback path

Returns:

  • Optional[dict]: Response modifications
on_swml_request
def on_swml_request(
request_data: Optional[dict] = None,
callback_path: Optional[str] = None,
request: Optional[Request] = None
) -> Optional[dict]

Override to handle SWML generation requests.

Parameters:

  • request_data (Optional[dict]): Request data
  • callback_path (Optional[str]): Callback path
  • request (Optional[Request]): FastAPI request object

Returns:

  • Optional[dict]: SWML modifications

Authentication

validate_basic_auth(username: str, password: str) -> bool

Override to implement custom basic authentication logic.

Parameters:

  • username (str): Username from basic auth
  • password (str): Password from basic auth

Returns:

  • bool: True if credentials are valid

Usage:

class MyAgent(AgentBase):
def validate_basic_auth(self, username, password):
# Custom auth logic
return username == "admin" and password == "secret"
get_basic_auth_credentials
def get_basic_auth_credentials(
include_source: bool = False
) -> Union[Tuple[str, str], Tuple[str, str, str]]

Get basic auth credentials from environment or constructor.

Parameters:

  • include_source (bool): Include source information (default: False)

Returns:

  • Tuple: (username, password) or (username, password, source)

Context System

define_contexts() -> ContextBuilder

Define structured workflow contexts for the agent.

Returns:

  • ContextBuilder: Builder for creating contexts and steps

Usage:

contexts = agent.define_contexts()
contexts.add_context("greeting") \
.add_step("welcome", "Welcome! How can I help?") \
.on_completion_go_to("main_menu")

contexts.add_context("main_menu") \
.add_step("menu", "Choose: 1) Support 2) Sales 3) Billing") \
.allow_functions(["transfer_to_support", "transfer_to_sales"])

This concludes Part 1 of the API reference covering the AgentBase class. The document will continue with SwaigFunctionResult, DataMap, and other components in subsequent parts.


SwaigFunctionResult Class

The SwaigFunctionResult class is used to create structured responses from SWAIG functions. It handles both natural language responses and structured actions that the agent should execute.

Constructor

SwaigFunctionResult(
response: Optional[str] = None,
post_process: bool = False
)

Parameters:

  • response (Optional[str]): Natural language response text for the AI to speak
  • post_process (bool): Whether to let AI take another turn before executing actions (default: False)

Post-processing Behavior:

  • post_process=False (default): Execute actions immediately after AI response
  • post_process=True: Let AI respond to user one more time, then execute actions

Usage:

# Simple response
result = SwaigFunctionResult("The weather is sunny and 75°F")

# Response with post-processing enabled
result = SwaigFunctionResult("I'll transfer you now", post_process=True)

# Empty response (actions only)
result = SwaigFunctionResult()

Core Methods

Response Configuration

set_response(response: str) -> SwaigFunctionResult

Set or update the natural language response text.

Parameters:

  • response (str): The text the AI should speak

Usage:

result = SwaigFunctionResult()
result.set_response("I found your order information")
set_post_process(post_process: bool) -> SwaigFunctionResult

Enable or disable post-processing for this result.

Parameters:

  • post_process (bool): True to let AI respond once more before executing actions

Usage:

result = SwaigFunctionResult("I'll help you with that")
result.set_post_process(True) # Let AI handle follow-up questions first

Action Management

add_action(name: str, data: Any) -> SwaigFunctionResult

Add a structured action to execute.

Parameters:

  • name (str): Action name/type (e.g., "play", "transfer", "set_global_data")
  • data (Any): Action data - can be string, boolean, object, or array

Usage:

# Simple action with boolean
result.add_action("hangup", True)

# Action with string data
result.add_action("play", "welcome.mp3")

# Action with object data
result.add_action("set_global_data", {"customer_id": "12345", "status": "verified"})

# Action with array data
result.add_action("send_sms", ["+15551234567", "Your order is ready!"])
add_actions(actions: List[Dict[str, Any]]) -> SwaigFunctionResult

Add multiple actions at once.

Parameters:

  • actions (List[Dict[str, Any]]): List of action dictionaries

Usage:

result.add_actions([
{"play": "hold_music.mp3"},
{"set_global_data": {"status": "on_hold"}},
{"wait": 5000}
])

Call Control Actions

Call Transfer and Connection

connect(destination: str, final: bool = True, from_addr: Optional[str] = None) -> SwaigFunctionResult

Transfer or connect the call to another destination.

Parameters:

  • destination (str): Phone number, SIP address, or other destination
  • final (bool): Permanent transfer (True) vs temporary transfer (False) (default: True)
  • from_addr (Optional[str]): Override caller ID

Transfer Types:

  • final=True: Permanent transfer - call exits agent completely
  • final=False: Temporary transfer - call returns to agent if far end hangs up

Usage:

# Permanent transfer to phone number
result.connect("+15551234567", final=True)

# Temporary transfer to SIP address with custom caller ID
result.connect("support@company.com", final=False, from_addr="+15559876543")

# Transfer with response
result = SwaigFunctionResult("Transferring you to our sales team")
result.connect("sales@company.com")
swml_transfer(dest: str, ai_response: str) -> SwaigFunctionResult

Create a SWML-based transfer with AI response setup.

Parameters:

  • dest (str): Transfer destination
  • ai_response (str): AI response when transfer completes

Usage:

result.swml_transfer(
"+15551234567",
"You've been transferred back to me. How else can I help?"
)
sip_refer(to_uri: str) -> SwaigFunctionResult

Perform a SIP REFER transfer.

Parameters:

  • to_uri (str): SIP URI to transfer to

Usage:

result.sip_refer("sip:support@company.com")

Call Management

hangup() -> SwaigFunctionResult

End the call immediately.

Usage:

result = SwaigFunctionResult("Thank you for calling. Goodbye!")
result.hangup()
hold(timeout: int = 300) -> SwaigFunctionResult

Put the call on hold.

Parameters:

  • timeout (int): Hold timeout in seconds (default: 300)

Usage:

result = SwaigFunctionResult("Please hold while I look that up")
result.hold(timeout=60)
stop() -> SwaigFunctionResult

Stop current audio playback or recording.

Usage:

result.stop()

Audio Control

say(text: str) -> SwaigFunctionResult

Add text for the AI to speak.

Parameters:

  • text (str): Text to speak

Usage:

result.say("Please wait while I process your request")
play_background_file(filename: str, wait: bool = False) -> SwaigFunctionResult

Play an audio file in the background.

Parameters:

  • filename (str): Audio file path or URL
  • wait (bool): Wait for file to finish before continuing (default: False)

Usage:

# Play hold music in background
result.play_background_file("hold_music.mp3")

# Play announcement and wait for completion
result.play_background_file("important_announcement.wav", wait=True)
stop_background_file() -> SwaigFunctionResult

Stop background audio playback.

Usage:

result.stop_background_file()

Data Management Actions

set_global_data(data: Dict[str, Any]) -> SwaigFunctionResult

Set global data for the conversation.

Parameters:

  • data (Dict[str, Any]): Global data to set

Usage:

result.set_global_data({
"customer_id": "12345",
"order_status": "shipped",
"tracking_number": "1Z999AA1234567890"
})
update_global_data(data: Dict[str, Any]) -> SwaigFunctionResult

Update existing global data (merge with existing).

Parameters:

  • data (Dict[str, Any]): Data to merge

Usage:

result.update_global_data({
"last_interaction": "2024-01-15T10:30:00Z",
"agent_notes": "Customer satisfied with resolution"
})
remove_global_data(keys: Union[str, List[str]]) -> SwaigFunctionResult

Remove specific keys from global data.

Parameters:

  • keys (Union[str, List[str]]): Key name or list of key names to remove

Usage:

# Remove single key
result.remove_global_data("temporary_data")

# Remove multiple keys
result.remove_global_data(["temp1", "temp2", "cache_data"])
set_metadata(data: Dict[str, Any]) -> SwaigFunctionResult

Set metadata for the conversation.

Parameters:

  • data (Dict[str, Any]): Metadata to set

Usage:

result.set_metadata({
"call_type": "support",
"priority": "high",
"department": "technical"
})
remove_metadata(keys: Union[str, List[str]]) -> SwaigFunctionResult

Remove specific metadata keys.

Parameters:

  • keys (Union[str, List[str]]): Key name or list of key names to remove

Usage:

result.remove_metadata(["temporary_flag", "debug_info"])

AI Behavior Control

set_end_of_speech_timeout(milliseconds: int) -> SwaigFunctionResult

Adjust how long to wait for speech to end.

Parameters:

  • milliseconds (int): Timeout in milliseconds

Usage:

# Shorter timeout for quick responses
result.set_end_of_speech_timeout(300)

# Longer timeout for thoughtful responses
result.set_end_of_speech_timeout(2000)
set_speech_event_timeout(milliseconds: int) -> SwaigFunctionResult

Set timeout for speech events.

Parameters:

  • milliseconds (int): Timeout in milliseconds

Usage:

result.set_speech_event_timeout(5000)
wait_for_user(enabled: Optional[bool] = None, timeout: Optional[int] = None, answer_first: bool = False) -> SwaigFunctionResult

Control whether to wait for user input.

Parameters:

  • enabled (Optional[bool]): Enable/disable waiting for user
  • timeout (Optional[int]): Timeout in milliseconds
  • answer_first (bool): Answer call before waiting (default: False)

Usage:

# Wait for user input with 10 second timeout
result.wait_for_user(enabled=True, timeout=10000)

# Don't wait for user (immediate response)
result.wait_for_user(enabled=False)
toggle_functions(function_toggles: List[Dict[str, Any]]) -> SwaigFunctionResult

Enable or disable specific functions.

Parameters:

  • function_toggles (List[Dict[str, Any]]): List of function toggle configurations

Usage:

result.toggle_functions([
{"name": "transfer_to_sales", "enabled": True},
{"name": "end_call", "enabled": False},
{"name": "escalate", "enabled": True, "timeout": 30000}
])
enable_functions_on_timeout(enabled: bool = True) -> SwaigFunctionResult

Control whether functions are enabled when timeout occurs.

Parameters:

  • enabled (bool): Enable functions on timeout (default: True)

Usage:

result.enable_functions_on_timeout(False)  # Disable functions on timeout
enable_extensive_data(enabled: bool = True) -> SwaigFunctionResult

Enable extensive data collection.

Parameters:

  • enabled (bool): Enable extensive data (default: True)

Usage:

result.enable_extensive_data(True)
update_settings(settings: Dict[str, Any]) -> SwaigFunctionResult

Update various AI settings.

Parameters:

  • settings (Dict[str, Any]): Settings to update

Usage:

result.update_settings({
"temperature": 0.8,
"max_tokens": 150,
"end_of_speech_timeout": 800
})

Context and Conversation Control

switch_context(system_prompt: Optional[str] = None, user_prompt: Optional[str] = None, consolidate: bool = False, full_reset: bool = False) -> SwaigFunctionResult

Switch conversation context or reset the conversation.

Parameters:

  • system_prompt (Optional[str]): New system prompt
  • user_prompt (Optional[str]): New user prompt
  • consolidate (bool): Consolidate conversation history (default: False)
  • full_reset (bool): Completely reset conversation (default: False)

Usage:

# Switch to technical support context
result.switch_context(
system_prompt="You are now a technical support specialist",
user_prompt="The customer needs technical help"
)

# Reset conversation completely
result.switch_context(full_reset=True)

# Consolidate conversation history
result.switch_context(consolidate=True)
simulate_user_input(text: str) -> SwaigFunctionResult

Simulate user input for testing or automation.

Parameters:

  • text (str): Text to simulate as user input

Usage:

result.simulate_user_input("I need help with my order")

Communication Actions

send_sms(to_number: str, from_number: str, body: Optional[str] = None, media: Optional[List[str]] = None, tags: Optional[List[str]] = None, region: Optional[str] = None) -> SwaigFunctionResult

Send an SMS message.

Parameters:

  • to_number (str): Recipient phone number
  • from_number (str): Sender phone number
  • body (Optional[str]): SMS message text
  • media (Optional[List[str]]): List of media URLs
  • tags (Optional[List[str]]): Message tags
  • region (Optional[str]): SignalWire region

Usage:

# Simple text message
result.send_sms(
to_number="+15551234567",
from_number="+15559876543",
body="Your order #12345 has shipped!"
)

# Message with media and tags
result.send_sms(
to_number="+15551234567",
from_number="+15559876543",
body="Here's your receipt",
media=["https://example.com/receipt.pdf"],
tags=["receipt", "order_12345"]
)

Recording and Media

record_call(control_id: Optional[str] = None, stereo: bool = False, format: str = "wav", direction: str = "both", terminators: Optional[str] = None, beep: bool = False, input_sensitivity: float = 44.0, initial_timeout: float = 0.0, end_silence_timeout: float = 0.0, max_length: Optional[float] = None, status_url: Optional[str] = None) -> SwaigFunctionResult

Start call recording.

Parameters:

  • control_id (Optional[str]): Unique identifier for this recording
  • stereo (bool): Record in stereo (default: False)
  • format (str): Recording format: "wav", "mp3", "mp4" (default: "wav")
  • direction (str): Recording direction: "both", "inbound", "outbound" (default: "both")
  • terminators (Optional[str]): DTMF keys to stop recording
  • beep (bool): Play beep before recording (default: False)
  • input_sensitivity (float): Input sensitivity level (default: 44.0)
  • initial_timeout (float): Initial timeout in seconds (default: 0.0)
  • end_silence_timeout (float): End silence timeout in seconds (default: 0.0)
  • max_length (Optional[float]): Maximum recording length in seconds
  • status_url (Optional[str]): Webhook URL for recording status

Usage:

# Basic recording
result.record_call(format="mp3", direction="both")

# Recording with control ID and settings
result.record_call(
control_id="customer_call_001",
stereo=True,
format="wav",
beep=True,
max_length=300.0,
terminators="#*"
)
stop_record_call(control_id: Optional[str] = None) -> SwaigFunctionResult

Stop call recording.

Parameters:

  • control_id (Optional[str]): Control ID of recording to stop

Usage:

result.stop_record_call()
result.stop_record_call(control_id="customer_call_001")

Conference and Room Management

join_room(name: str) -> SwaigFunctionResult

Join a SignalWire room.

Parameters:

  • name (str): Room name to join

Usage:

result.join_room("support_room_1")
join_conference(name: str, muted: bool = False, beep: str = "true", start_on_enter: bool = True, end_on_exit: bool = False, wait_url: Optional[str] = None, max_participants: int = 250, record: str = "do-not-record", region: Optional[str] = None, trim: str = "trim-silence", coach: Optional[str] = None, status_callback_event: Optional[str] = None, status_callback: Optional[str] = None, status_callback_method: str = "POST", recording_status_callback: Optional[str] = None, recording_status_callback_method: str = "POST", recording_status_callback_event: str = "completed", result: Optional[Any] = None) -> SwaigFunctionResult

Join a conference call.

Parameters:

  • name (str): Conference name
  • muted (bool): Join muted (default: False)
  • beep (str): Beep setting: "true", "false", "onEnter", "onExit" (default: "true")
  • start_on_enter (bool): Start conference when this participant enters (default: True)
  • end_on_exit (bool): End conference when this participant exits (default: False)
  • wait_url (Optional[str]): URL for hold music/content
  • max_participants (int): Maximum participants (default: 250)
  • record (str): Recording setting (default: "do-not-record")
  • region (Optional[str]): SignalWire region
  • trim (str): Trim setting for recordings (default: "trim-silence")
  • coach (Optional[str]): Coach participant identifier
  • status_callback_event (Optional[str]): Status callback events
  • status_callback (Optional[str]): Status callback URL
  • status_callback_method (str): Status callback HTTP method (default: "POST")
  • recording_status_callback (Optional[str]): Recording status callback URL
  • recording_status_callback_method (str): Recording status callback method (default: "POST")
  • recording_status_callback_event (str): Recording status callback events (default: "completed")

Usage:

# Basic conference join
result.join_conference("sales_meeting")

# Conference with recording and settings
result.join_conference(
name="support_conference",
muted=False,
beep="onEnter",
record="record-from-start",
max_participants=10
)

Payment Processing

pay(payment_connector_url: str, input_method: str = "dtmf", status_url: Optional[str] = None, payment_method: str = "credit-card", timeout: int = 5, max_attempts: int = 1, security_code: bool = True, postal_code: Union[bool, str] = True, min_postal_code_length: int = 0, token_type: str = "reusable", charge_amount: Optional[str] = None, currency: str = "usd", language: str = "en-US", voice: str = "woman", description: Optional[str] = None, valid_card_types: str = "visa mastercard amex", parameters: Optional[List[Dict[str, str]]] = None, prompts: Optional[List[Dict[str, Any]]] = None) -> SwaigFunctionResult

Process a payment through the call.

Parameters:

  • payment_connector_url (str): Payment processor webhook URL
  • input_method (str): Input method: "dtmf", "speech" (default: "dtmf")
  • status_url (Optional[str]): Payment status webhook URL
  • payment_method (str): Payment method: "credit-card" (default: "credit-card")
  • timeout (int): Input timeout in seconds (default: 5)
  • max_attempts (int): Maximum retry attempts (default: 1)
  • security_code (bool): Require security code (default: True)
  • postal_code (Union[bool, str]): Require postal code (default: True)
  • min_postal_code_length (int): Minimum postal code length (default: 0)
  • token_type (str): Token type: "reusable", "one-time" (default: "reusable")
  • charge_amount (Optional[str]): Amount to charge
  • currency (str): Currency code (default: "usd")
  • language (str): Language for prompts (default: "en-US")
  • voice (str): Voice for prompts (default: "woman")
  • description (Optional[str]): Payment description
  • valid_card_types (str): Accepted card types (default: "visa mastercard amex")
  • parameters (Optional[List[Dict[str, str]]]): Additional parameters
  • prompts (Optional[List[Dict[str, Any]]]): Custom prompts

Usage:

# Basic payment processing
result.pay(
payment_connector_url="https://payment-processor.com/webhook",
charge_amount="29.99",
description="Monthly subscription"
)

# Payment with custom settings
result.pay(
payment_connector_url="https://payment-processor.com/webhook",
input_method="speech",
timeout=10,
max_attempts=3,
security_code=True,
postal_code=True,
charge_amount="149.99",
currency="usd",
description="Premium service upgrade"
)

Call Monitoring

tap(uri: str, control_id: Optional[str] = None, direction: str = "both", codec: str = "PCMU", rtp_ptime: int = 20, status_url: Optional[str] = None) -> SwaigFunctionResult

Start call tapping/monitoring.

Parameters:

  • uri (str): URI to send tapped audio to
  • control_id (Optional[str]): Unique identifier for this tap
  • direction (str): Tap direction: "both", "inbound", "outbound" (default: "both")
  • codec (str): Audio codec: "PCMU", "PCMA", "G722" (default: "PCMU")
  • rtp_ptime (int): RTP packet time in milliseconds (default: 20)
  • status_url (Optional[str]): Status webhook URL

Usage:

# Basic call tapping
result.tap("sip:monitor@company.com")

# Tap with specific settings
result.tap(
uri="sip:quality@company.com",
control_id="quality_monitor_001",
direction="both",
codec="G722"
)
stop_tap(control_id: Optional[str] = None) -> SwaigFunctionResult

Stop call tapping.

Parameters:

  • control_id (Optional[str]): Control ID of tap to stop

Usage:

result.stop_tap()
result.stop_tap(control_id="quality_monitor_001")

Advanced SWML Execution

execute_swml(swml_content, transfer: bool = False) -> SwaigFunctionResult

Execute custom SWML content.

Parameters:

  • swml_content: SWML document or content to execute
  • transfer (bool): Whether this is a transfer operation (default: False)

Usage:

# Execute custom SWML
custom_swml = {
"version": "1.0.0",
"sections": {
"main": [
{"play": {"url": "https://example.com/custom.mp3"}},
{"say": {"text": "Custom SWML execution"}}
]
}
}
result.execute_swml(custom_swml)

Utility Methods

to_dict() -> Dict[str, Any]

Convert the result to a dictionary for serialization.

Returns:

  • Dict[str, Any]: Dictionary representation of the result

Usage:

result = SwaigFunctionResult("Hello world")
result.add_action("play", "music.mp3")
result_dict = result.to_dict()
print(result_dict)
# Output: {"response": "Hello world", "action": [{"play": "music.mp3"}]}

Static Helper Methods

create_payment_prompt(for_situation: str, actions: List[Dict[str, str]], card_type: Optional[str] = None, error_type: Optional[str] = None) -> Dict[str, Any]

Create a payment prompt configuration.

Parameters:

  • for_situation (str): Situation identifier
  • actions (List[Dict[str, str]]): List of action configurations
  • card_type (Optional[str]): Card type for prompts
  • error_type (Optional[str]): Error type for error prompts

Usage:

prompt = SwaigFunctionResult.create_payment_prompt(
for_situation="card_number",
actions=[
SwaigFunctionResult.create_payment_action("say", "Please enter your card number")
]
)
create_payment_action(action_type: str, phrase: str) -> Dict[str, str]

Create a payment action configuration.

Parameters:

  • action_type (str): Action type
  • phrase (str): Action phrase

Usage:

action = SwaigFunctionResult.create_payment_action("say", "Enter your card number")
create_payment_parameter(name: str, value: str) -> Dict[str, str]

Create a payment parameter configuration.

Parameters:

  • name (str): Parameter name
  • value (str): Parameter value

Usage:

param = SwaigFunctionResult.create_payment_parameter("merchant_id", "12345")

Method Chaining

All methods return self, enabling fluent method chaining:

result = (SwaigFunctionResult("I'll help you with that")
.set_post_process(True)
.update_global_data({"status": "helping"})
.set_end_of_speech_timeout(800)
.add_action("play", "thinking.mp3"))

# Complex workflow
result = (SwaigFunctionResult("Processing your payment")
.set_post_process(True)
.update_global_data({"payment_status": "processing"})
.pay(
payment_connector_url="https://payments.com/webhook",
charge_amount="99.99",
description="Service payment"
)
.send_sms(
to_number="+15551234567",
from_number="+15559876543",
body="Payment confirmation will be sent shortly"
))

This concludes Part 2 of the API reference covering the SwaigFunctionResult class. The document will continue with DataMap and other components in subsequent parts.


DataMap Class

The DataMap class provides a declarative approach to creating SWAIG tools that integrate with REST APIs without requiring webhook infrastructure. DataMap tools execute on SignalWire's server infrastructure, eliminating the need to expose webhook endpoints.

Constructor

DataMap(function_name: str)

Parameters:

  • function_name (str): Name of the SWAIG function this DataMap will create

Usage:

# Create a new DataMap tool
weather_map = DataMap('get_weather')
search_map = DataMap('search_docs')

Core Configuration Methods

Function Metadata

purpose(description: str) -> DataMap

Set the function description/purpose.

Parameters:

  • description (str): Human-readable description of what this function does

Usage:

data_map = DataMap('get_weather').purpose('Get current weather information for any city')
description(description: str) -> DataMap

Alias for purpose() - set the function description.

Parameters:

  • description (str): Function description

Usage:

data_map = DataMap('search_api').description('Search our knowledge base for information')

Parameter Definition

parameter(name: str, param_type: str, description: str, required: bool = False, enum: Optional[List[str]] = None) -> DataMap

Add a function parameter with JSON schema validation.

Parameters:

  • name (str): Parameter name
  • param_type (str): JSON schema type: "string", "number", "boolean", "array", "object"
  • description (str): Parameter description for the AI
  • required (bool): Whether parameter is required (default: False)
  • enum (Optional[List[str]]): List of allowed values for validation

Usage:

# Required string parameter
data_map.parameter('location', 'string', 'City name or ZIP code', required=True)

# Optional number parameter
data_map.parameter('days', 'number', 'Number of forecast days', required=False)

# Enum parameter with allowed values
data_map.parameter('units', 'string', 'Temperature units',
enum=['celsius', 'fahrenheit'], required=False)

# Boolean parameter
data_map.parameter('include_alerts', 'boolean', 'Include weather alerts', required=False)

# Array parameter
data_map.parameter('categories', 'array', 'Search categories to include')

API Integration Methods

HTTP Webhook Configuration

webhook(method: str, url: str, headers: Optional[Dict[str, str]] = None, form_param: Optional[str] = None, input_args_as_params: bool = False, require_args: Optional[List[str]] = None) -> DataMap

Configure an HTTP API call.

Parameters:

  • method (str): HTTP method: "GET", "POST", "PUT", "DELETE", "PATCH"
  • url (str): API endpoint URL (supports ${variable} substitution)
  • headers (Optional[Dict[str, str]]): HTTP headers to send
  • form_param (Optional[str]): Send JSON body as single form parameter with this name
  • input_args_as_params (bool): Merge function arguments into URL parameters (default: False)
  • require_args (Optional[List[str]]): Only execute if these arguments are present

Variable Substitution in URLs:

  • ${args.parameter_name}: Function argument values
  • ${global_data.key}: Call-wide data store (user info, call state - NOT credentials)
  • ${meta_data.call_id}: Call and function metadata

Usage:

# Simple GET request with parameter substitution
data_map.webhook('GET', 'https://api.weather.com/v1/current?key=API_KEY&q=${args.location}')

# POST request with authentication headers
data_map.webhook(
'POST',
'https://api.company.com/search',
headers={
'Authorization': 'Bearer YOUR_TOKEN',
'Content-Type': 'application/json'
}
)

# Webhook that requires specific arguments
data_map.webhook(
'GET',
'https://api.service.com/data?id=${args.customer_id}',
require_args=['customer_id']
)

# Use global data for call-related info (NOT credentials)
data_map.webhook(
'GET',
'https://api.service.com/customer/${global_data.customer_id}/orders',
headers={'Authorization': 'Bearer YOUR_API_TOKEN'} # Use static credentials
)
body(data: Dict[str, Any]) -> DataMap

Set the JSON body for POST/PUT requests.

Parameters:

  • data (Dict[str, Any]): JSON body data (supports ${variable} substitution)

Usage:

# Static body with parameter substitution
data_map.body({
'query': '${args.search_term}',
'limit': 5,
'filters': {
'category': '${args.category}',
'active': True
}
})

# Body with call-related data (NOT sensitive info)
data_map.body({
'customer_id': '${global_data.customer_id}',
'request_id': '${meta_data.call_id}',
'search': '${args.query}'
})
params(data: Dict[str, Any]) -> DataMap

Set URL query parameters.

Parameters:

  • data (Dict[str, Any]): Query parameters (supports ${variable} substitution)

Usage:

# URL parameters with substitution
data_map.params({
'api_key': 'YOUR_API_KEY',
'q': '${args.location}',
'units': '${args.units}',
'lang': 'en'
})

Multiple Webhooks and Fallbacks

DataMap supports multiple webhook configurations for fallback scenarios:

# Primary API with fallback
data_map = (DataMap('search_with_fallback')
.purpose('Search with multiple API fallbacks')
.parameter('query', 'string', 'Search query', required=True)

# Primary API
.webhook('GET', 'https://api.primary.com/search?q=${args.query}')
.output(SwaigFunctionResult('Primary result: ${response.title}'))

# Fallback API
.webhook('GET', 'https://api.fallback.com/search?q=${args.query}')
.output(SwaigFunctionResult('Fallback result: ${response.title}'))

# Final fallback if all APIs fail
.fallback_output(SwaigFunctionResult('Sorry, all search services are currently unavailable'))
)

Response Processing

Basic Output

output(result: SwaigFunctionResult) -> DataMap

Set the response template for successful API calls.

Parameters:

  • result (SwaigFunctionResult): Response template with variable substitution

Variable Substitution in Outputs:

  • ${response.field}: API response fields
  • ${response.nested.field}: Nested response fields
  • ${response.array[0].field}: Array element fields
  • ${args.parameter}: Original function arguments
  • ${global_data.key}: Call-wide data store (user info, call state)

Usage:

# Simple response template
data_map.output(SwaigFunctionResult('Weather in ${args.location}: ${response.current.condition.text}, ${response.current.temp_f}°F'))

# Response with actions
data_map.output(
SwaigFunctionResult('Found ${response.total_results} results')
.update_global_data({'last_search': '${args.query}'})
.add_action('play', 'search_complete.mp3')
)

# Complex response with nested data
data_map.output(
SwaigFunctionResult('Order ${response.order.id} status: ${response.order.status}. Estimated delivery: ${response.order.delivery.estimated_date}')
)
fallback_output(result: SwaigFunctionResult) -> DataMap

Set the response when all webhooks fail.

Parameters:

  • result (SwaigFunctionResult): Fallback response

Usage:

data_map.fallback_output(
SwaigFunctionResult('Sorry, the service is temporarily unavailable. Please try again later.')
.add_action('play', 'service_unavailable.mp3')
)

Array Processing

foreach(foreach_config: Union[str, Dict[str, Any]]) -> DataMap

Process array responses by iterating over elements.

Parameters:

  • foreach_config (Union[str, Dict]): Array path or configuration object

Simple Array Processing:

# Process array of search results
data_map = (DataMap('search_docs')
.webhook('GET', 'https://api.docs.com/search?q=${args.query}')
.foreach('${response.results}') # Iterate over results array
.output(SwaigFunctionResult('Found: ${foreach.title} - ${foreach.summary}'))
)

Advanced Array Processing:

# Complex foreach configuration
data_map.foreach({
'array': '${response.items}',
'limit': 3, # Process only first 3 items
'filter': {
'field': 'status',
'value': 'active'
}
})

Foreach Variable Access:

  • ${foreach.field}: Current array element field
  • ${foreach.nested.field}: Nested fields in current element
  • ${foreach_index}: Current iteration index (0-based)
  • ${foreach_count}: Total number of items being processed

Pattern-Based Processing

Expression Matching

expression(test_value: str, pattern: Union[str, Pattern], output: SwaigFunctionResult, nomatch_output: Optional[SwaigFunctionResult] = None) -> DataMap

Add pattern-based responses without API calls.

Parameters:

  • test_value (str): Template string to test against pattern
  • pattern (Union[str, Pattern]): Regex pattern or compiled Pattern object
  • output (SwaigFunctionResult): Response when pattern matches
  • nomatch_output (Optional[SwaigFunctionResult]): Response when pattern doesn't match

Usage:

# Command-based responses
control_map = (DataMap('file_control')
.purpose('Control file playback')
.parameter('command', 'string', 'Playback command', required=True)
.parameter('filename', 'string', 'File to control')

# Start commands
.expression(
'${args.command}',
r'start|play|begin',
SwaigFunctionResult('Starting playback')
.add_action('start_playback', {'file': '${args.filename}'})
)

# Stop commands
.expression(
'${args.command}',
r'stop|pause|halt',
SwaigFunctionResult('Stopping playback')
.add_action('stop_playback', True)
)

# Volume commands
.expression(
'${args.command}',
r'volume (\d+)',
SwaigFunctionResult('Setting volume to ${match.1}')
.add_action('set_volume', '${match.1}')
)
)

Pattern Matching Variables:

  • ${match.0}: Full match
  • ${match.1}, ${match.2}, etc.: Capture groups
  • ${match.group_name}: Named capture groups

Error Handling

error_keys(keys: List[str]) -> DataMap

Specify response fields that indicate errors.

Parameters:

  • keys (List[str]): List of field names that indicate API errors

Usage:

# Treat these response fields as errors
data_map.error_keys(['error', 'error_message', 'status_code'])

# If API returns {"error": "Not found"}, DataMap will treat this as an error
global_error_keys(keys: List[str]) -> DataMap

Set global error keys for all webhooks in this DataMap.

Parameters:

  • keys (List[str]): Global error field names

Usage:

data_map.global_error_keys(['error', 'message', 'code'])

Advanced Configuration

webhook_expressions(expressions: List[Dict[str, Any]]) -> DataMap

Add expression-based webhook selection.

Parameters:

  • expressions (List[Dict[str, Any]]): List of expression configurations

Usage:

# Different APIs based on input
data_map.webhook_expressions([
{
'test': '${args.type}',
'pattern': 'weather',
'webhook': {
'method': 'GET',
'url': 'https://weather-api.com/current?q=${args.location}'
}
},
{
'test': '${args.type}',
'pattern': 'news',
'webhook': {
'method': 'GET',
'url': 'https://news-api.com/search?q=${args.query}'
}
}
])

Complete DataMap Examples

Simple Weather API

weather_tool = (DataMap('get_weather')
.purpose('Get current weather information')
.parameter('location', 'string', 'City name or ZIP code', required=True)
.parameter('units', 'string', 'Temperature units', enum=['celsius', 'fahrenheit'])
.webhook('GET', 'https://api.weather.com/v1/current?key=API_KEY&q=${args.location}&units=${args.units}')
.output(SwaigFunctionResult('Weather in ${args.location}: ${response.current.condition.text}, ${response.current.temp_f}°F'))
.error_keys(['error'])
)

# Register with agent
agent.register_swaig_function(weather_tool.to_swaig_function())

Search with Array Processing

search_tool = (DataMap('search_knowledge')
.purpose('Search company knowledge base')
.parameter('query', 'string', 'Search query', required=True)
.parameter('category', 'string', 'Search category', enum=['docs', 'faq', 'policies'])
.webhook(
'POST',
'https://api.company.com/search',
headers={'Authorization': 'Bearer TOKEN'}
)
.body({
'query': '${args.query}',
'category': '${args.category}',
'limit': 5
})
.foreach('${response.results}')
.output(SwaigFunctionResult('Found: ${foreach.title} - ${foreach.summary}'))
.fallback_output(SwaigFunctionResult('Search service is temporarily unavailable'))
)

Command Processing (No API)

control_tool = (DataMap('system_control')
.purpose('Control system functions')
.parameter('action', 'string', 'Action to perform', required=True)
.parameter('target', 'string', 'Target for the action')

# Restart commands
.expression(
'${args.action}',
r'restart|reboot',
SwaigFunctionResult('Restarting ${args.target}')
.add_action('restart_service', {'service': '${args.target}'})
)

# Status commands
.expression(
'${args.action}',
r'status|check',
SwaigFunctionResult('Checking status of ${args.target}')
.add_action('check_status', {'service': '${args.target}'})
)

# Default for unrecognized commands
.expression(
'${args.action}',
r'.*',
SwaigFunctionResult('Unknown command: ${args.action}'),
nomatch_output=SwaigFunctionResult('Please specify a valid action')
)
)

Conversion and Registration

to_swaig_function() -> Dict[str, Any]

Convert the DataMap to a SWAIG function dictionary for registration.

Returns:

  • Dict[str, Any]: Complete SWAIG function definition

Usage:

# Build DataMap
weather_map = DataMap('get_weather').purpose('Get weather').parameter('location', 'string', 'City', required=True)

# Convert to SWAIG function and register
swaig_function = weather_map.to_swaig_function()
agent.register_swaig_function(swaig_function)

Convenience Functions

The SDK provides helper functions for common DataMap patterns:

create_simple_api_tool(name: str, url: str, response_template: str, parameters: Optional[Dict[str, Dict]] = None, method: str = "GET", headers: Optional[Dict[str, str]] = None, body: Optional[Dict[str, Any]] = None, error_keys: Optional[List[str]] = None) -> DataMap

Create a simple API integration tool.

Parameters:

  • name (str): Function name
  • url (str): API endpoint URL
  • response_template (str): Response template string
  • parameters (Optional[Dict[str, Dict]]): Parameter definitions
  • method (str): HTTP method (default: "GET")
  • headers (Optional[Dict[str, str]]): HTTP headers
  • body (Optional[Dict[str, Any]]): Request body
  • error_keys (Optional[List[str]]): Error field names

Usage:

from signalwire_agents.core.data_map import create_simple_api_tool

weather = create_simple_api_tool(
name='get_weather',
url='https://api.weather.com/v1/current?key=API_KEY&q=${location}',
response_template='Weather in ${location}: ${response.current.condition.text}',
parameters={
'location': {
'type': 'string',
'description': 'City name',
'required': True
}
}
)

agent.register_swaig_function(weather.to_swaig_function())
create_expression_tool(name: str, patterns: Dict[str, Tuple[str, SwaigFunctionResult]], parameters: Optional[Dict[str, Dict]] = None) -> DataMap

Create a pattern-based tool without API calls.

Parameters:

  • name (str): Function name
  • patterns (Dict[str, Tuple[str, SwaigFunctionResult]]): Pattern mappings
  • parameters (Optional[Dict[str, Dict]]): Parameter definitions

Usage:

from signalwire_agents.core.data_map import create_expression_tool

file_control = create_expression_tool(
name='file_control',
patterns={
r'start.*': ('${args.command}', SwaigFunctionResult().add_action('start_playback', True)),
r'stop.*': ('${args.command}', SwaigFunctionResult().add_action('stop_playback', True))
},
parameters={
'command': {
'type': 'string',
'description': 'Playback command',
'required': True
}
}
)

agent.register_swaig_function(file_control.to_swaig_function())

Method Chaining

All DataMap methods return self, enabling fluent method chaining:

complete_tool = (DataMap('comprehensive_search')
.purpose('Comprehensive search with fallbacks')
.parameter('query', 'string', 'Search query', required=True)
.parameter('category', 'string', 'Search category', enum=['all', 'docs', 'faq'])
.webhook('GET', 'https://primary-api.com/search?q=${args.query}&cat=${args.category}')
.output(SwaigFunctionResult('Primary: ${response.title}'))
.webhook('GET', 'https://backup-api.com/search?q=${args.query}')
.output(SwaigFunctionResult('Backup: ${response.title}'))
.fallback_output(SwaigFunctionResult('All search services unavailable'))
.error_keys(['error', 'message'])
)

This concludes Part 3 of the API reference covering the DataMap class. The document will continue with Context System and other components in subsequent parts.


Context System

The Context System enhances traditional prompt-based agents by adding structured workflows with sequential steps on top of a base prompt. Each step contains its own guidance, completion criteria, and function restrictions while building upon the agent's foundational prompt.

ContextBuilder Class

The ContextBuilder is accessed via agent.define_contexts() and provides the main interface for creating structured workflows.

Getting Started

# Access the context builder
contexts = agent.define_contexts()

# Create contexts and steps
contexts.add_context("greeting") \
.add_step("welcome") \
.set_text("Welcome! How can I help you today?") \
.set_step_criteria("User has stated their need") \
.set_valid_steps(["next"])
add_context(name: str) -> Context

Create a new context in the workflow.

Parameters:

  • name (str): Unique context name

Returns:

  • Context: Context object for method chaining

Usage:

# Create multiple contexts
greeting_context = contexts.add_context("greeting")
main_menu_context = contexts.add_context("main_menu")
support_context = contexts.add_context("support")

Context Class

The Context class represents a conversation context containing multiple steps with enhanced features:

class Context:
def add_step(self, name: str) -> Step
"""Create a new step in this context"""

def set_valid_contexts(self, contexts: List[str]) -> Context
"""Set which contexts can be accessed from this context"""

# Context entry parameters (for context switching behavior)
def set_post_prompt(self, post_prompt: str) -> Context
"""Override agent's post prompt when this context is active"""

def set_system_prompt(self, system_prompt: str) -> Context
"""Trigger context switch with new system instructions (makes this a Context Switch Context)"""

def set_consolidate(self, consolidate: bool) -> Context
"""Whether to consolidate conversation history when entering this context"""

def set_full_reset(self, full_reset: bool) -> Context
"""Whether to do complete system prompt replacement vs injection"""

def set_user_prompt(self, user_prompt: str) -> Context
"""User message to inject when entering this context for AI context"""

# Context prompts (guidance for all steps in context)
def set_prompt(self, prompt: str) -> Context
"""Set simple string prompt that applies to all steps in this context"""

def add_section(self, title: str, body: str) -> Context
"""Add POM-style section to context prompt"""

def add_bullets(self, title: str, bullets: List[str]) -> Context
"""Add POM-style bullet section to context prompt"""

Context Types:

  1. Workflow Container Context (no system_prompt): Organizes steps without conversation state changes
  2. Context Switch Context (has system_prompt): Triggers conversation state changes when entered, processing entry parameters like a context_switch SWAIG action

Prompt Hierarchy: Base Agent Prompt → Context Prompt → Step Prompt

Usage Examples

# Workflow container context (just organizes steps)
main_context = contexts.add_context("main")
main_context.set_prompt("Follow standard customer service protocols")

# Context switch context (changes AI behavior)
billing_context = contexts.add_context("billing")
billing_context.set_system_prompt("You are now a billing specialist") \
.set_consolidate(True) \
.set_user_prompt("Customer needs billing assistance") \
.add_section("Department", "Billing Department") \
.add_bullets("Services", ["Account inquiries", "Payments", "Refunds"])

# Full reset context (complete conversation reset)
manager_context = contexts.add_context("manager")
manager_context.set_system_prompt("You are a senior manager") \
.set_full_reset(True) \
.set_consolidate(True)

State Management

The State Management system provides persistent storage for conversation data across calls and sessions.

StateManager (Abstract Base Class)

The base interface that all state managers must implement.

Core Methods

store(call_id: str, data: Dict[str, Any]) -> bool

Store state data for a call.

Parameters:

  • call_id (str): Unique identifier for the call
  • data (Dict[str, Any]): State data to store

Returns:

  • bool: True if successful, False otherwise
retrieve(call_id: str) -> Optional[Dict[str, Any]]

Retrieve state data for a call.

Parameters:

  • call_id (str): Unique identifier for the call

Returns:

  • Optional[Dict[str, Any]]: State data or None if not found
update(call_id: str, data: Dict[str, Any]) -> bool

Update existing state data (merges with existing).

Parameters:

  • call_id (str): Unique identifier for the call
  • data (Dict[str, Any]): Data to merge with existing state

Returns:

  • bool: True if successful, False otherwise
delete(call_id: str) -> bool

Delete state data for a call.

Parameters:

  • call_id (str): Unique identifier for the call

Returns:

  • bool: True if successful, False otherwise
cleanup_expired() -> int

Clean up expired state data.

Returns:

  • int: Number of expired items cleaned up
exists(call_id: str) -> bool

Check if state exists for a call.

Parameters:

  • call_id (str): Unique identifier for the call

Returns:

  • bool: True if state exists, False otherwise

FileStateManager

File-based state manager implementation that stores state data in JSON files.

Constructor

FileStateManager(
storage_dir: str = "./agent_state",
expiry_hours: int = 24,
auto_cleanup: bool = True
)

Parameters:

  • storage_dir (str): Directory to store state files (default: "./agent_state")
  • expiry_hours (int): Hours after which state expires (default: 24)
  • auto_cleanup (bool): Automatically clean up expired files (default: True)

Usage

from signalwire_agents.core.state import FileStateManager

# Create file-based state manager
state_manager = FileStateManager(
storage_dir="/var/agent_state",
expiry_hours=48, # 2 days
auto_cleanup=True
)

# Use with agent
agent = AgentBase(
name="Stateful Agent",
enable_state_tracking=True,
state_manager=state_manager
)

# Manual state operations
state_manager.store("call_123", {
"customer_id": "12345",
"issue_type": "billing",
"status": "in_progress"
})

# Retrieve state
state = state_manager.retrieve("call_123")
if state:
print(f"Customer: {state['customer_id']}")

# Update state
state_manager.update("call_123", {
"status": "resolved",
"resolution": "Account credited"
})

# Clean up expired state
cleaned = state_manager.cleanup_expired()
print(f"Cleaned up {cleaned} expired state files")

Custom State Manager

You can implement custom state managers for databases, Redis, etc.:

from signalwire_agents.core.state import StateManager
import redis

class RedisStateManager(StateManager):
def __init__(self, redis_url: str, expiry_seconds: int = 86400):
self.redis = redis.from_url(redis_url)
self.expiry = expiry_seconds

def store(self, call_id: str, data: Dict[str, Any]) -> bool:
try:
import json
self.redis.setex(
f"agent_state:{call_id}",
self.expiry,
json.dumps(data)
)
return True
except Exception:
return False

def retrieve(self, call_id: str) -> Optional[Dict[str, Any]]:
try:
import json
data = self.redis.get(f"agent_state:{call_id}")
return json.loads(data) if data else None
except Exception:
return None

def update(self, call_id: str, data: Dict[str, Any]) -> bool:
existing = self.retrieve(call_id)
if existing:
existing.update(data)
return self.store(call_id, existing)
return self.store(call_id, data)

def delete(self, call_id: str) -> bool:
try:
self.redis.delete(f"agent_state:{call_id}")
return True
except Exception:
return False

def cleanup_expired(self) -> int:
# Redis handles expiry automatically
return 0

# Use custom state manager
redis_state = RedisStateManager("redis://localhost:6379")
agent = AgentBase(
name="Redis Agent",
enable_state_tracking=True,
state_manager=redis_state
)

Skills System

The Skills System provides modular, reusable capabilities that can be easily added to any agent.

Available Built-in Skills

datetime Skill

Provides current date and time information.

Parameters:

  • timezone (Optional[str]): Timezone for date/time (default: system timezone)
  • format (Optional[str]): Custom date/time format string

Usage:

# Basic datetime skill
agent.add_skill("datetime")

# With timezone
agent.add_skill("datetime", {"timezone": "America/New_York"})

# With custom format
agent.add_skill("datetime", {
"timezone": "UTC",
"format": "%Y-%m-%d %H:%M:%S %Z"
})

math Skill

Safe mathematical expression evaluation.

Parameters:

  • precision (Optional[int]): Decimal precision for results (default: 2)
  • max_expression_length (Optional[int]): Maximum expression length (default: 100)

Usage:

# Basic math skill
agent.add_skill("math")

# With custom precision
agent.add_skill("math", {"precision": 4})

web_search Skill

Google Custom Search API integration with web scraping.

Parameters:

  • api_key (str): Google Custom Search API key (required)
  • search_engine_id (str): Google Custom Search Engine ID (required)
  • num_results (Optional[int]): Number of results to return (default: 3)
  • tool_name (Optional[str]): Custom tool name for multiple instances
  • delay (Optional[float]): Delay between requests in seconds
  • no_results_message (Optional[str]): Custom message when no results found

Usage:

# Basic web search
agent.add_skill("web_search", {
"api_key": "your-google-api-key",
"search_engine_id": "your-search-engine-id"
})

# Multiple search instances
agent.add_skill("web_search", {
"api_key": "your-api-key",
"search_engine_id": "general-engine-id",
"tool_name": "search_general",
"num_results": 5
})

agent.add_skill("web_search", {
"api_key": "your-api-key",
"search_engine_id": "news-engine-id",
"tool_name": "search_news",
"num_results": 3,
"delay": 0.5
})

datasphere Skill

SignalWire DataSphere knowledge search integration.

Parameters:

  • space_name (str): DataSphere space name (required)
  • project_id (str): DataSphere project ID (required)
  • token (str): DataSphere access token (required)
  • document_id (Optional[str]): Specific document to search
  • tool_name (Optional[str]): Custom tool name for multiple instances
  • count (Optional[int]): Number of results to return (default: 3)
  • tags (Optional[List[str]]): Filter by document tags

Usage:

# Basic DataSphere search
agent.add_skill("datasphere", {
"space_name": "my-space",
"project_id": "my-project",
"token": "my-token"
})

# Multiple DataSphere instances
agent.add_skill("datasphere", {
"space_name": "my-space",
"project_id": "my-project",
"token": "my-token",
"document_id": "drinks-menu",
"tool_name": "search_drinks",
"count": 5
})

agent.add_skill("datasphere", {
"space_name": "my-space",
"project_id": "my-project",
"token": "my-token",
"tool_name": "search_policies",
"tags": ["HR", "Policies"]
})

native_vector_search Skill

Local document search with vector similarity and keyword search.

Parameters:

  • index_path (str): Path to search index file (required)
  • tool_name (Optional[str]): Custom tool name (default: "search_documents")
  • max_results (Optional[int]): Maximum results to return (default: 5)
  • similarity_threshold (Optional[float]): Minimum similarity score (default: 0.1)

Usage:

# Basic local search
agent.add_skill("native_vector_search", {
"index_path": "./knowledge.swsearch"
})

# With custom settings
agent.add_skill("native_vector_search", {
"index_path": "./docs.swsearch",
"tool_name": "search_docs",
"max_results": 10,
"similarity_threshold": 0.3
})

Creating Custom Skills

Skill Structure

Create a new skill by extending SkillBase:

from signalwire_agents.core.skill_base import SkillBase
from signalwire_agents.core.data_map import DataMap
from signalwire_agents.core.function_result import SwaigFunctionResult

class CustomSkill(SkillBase):
SKILL_NAME = "custom_skill"
SKILL_DESCRIPTION = "Description of what this skill does"
SKILL_VERSION = "1.0.0"
REQUIRED_PACKAGES = ["requests"] # Python packages needed
REQUIRED_ENV_VARS = ["API_KEY"] # Environment variables needed

def setup(self) -> bool:
"""Validate and store configuration"""
if not self.params.get("api_key"):
self.logger.error("api_key parameter is required")
return False

self.api_key = self.params["api_key"]
return True

def register_tools(self) -> None:
"""Register skill functions"""
# DataMap-based tool
tool = (DataMap("custom_function")
.description("Custom API integration")
.parameter("query", "string", "Search query", required=True)
.webhook("GET", f"https://api.example.com/search?key={self.api_key}&q=${{args.query}}")
.output(SwaigFunctionResult("Found: ${{response.title}}"))
)

self.agent.register_swaig_function(tool.to_swaig_function())

def get_hints(self) -> List[str]:
"""Speech recognition hints"""
return ["custom search", "find information"]

def get_global_data(self) -> Dict[str, Any]:
"""Global data for DataMap"""
return {"skill_version": self.SKILL_VERSION}

def get_prompt_sections(self) -> List[Dict[str, Any]]:
"""Prompt sections to add"""
return [{
"title": "Custom Search Capability",
"body": "You can search our custom database for information.",
"bullets": ["Use the custom_function to search", "Results are real-time"]
}]

Skill Registration

Skills are automatically discovered from the signalwire_agents/skills/ directory. To register a custom skill:

  1. Create directory: signalwire_agents/skills/your_skill/
  2. Add __init__.py, skill.py, and README.md
  3. Implement your skill class in skill.py
  4. The skill will be automatically available

Utility Classes

SWAIGFunction Class

Represents a SWAIG function definition with metadata and validation.

Constructor

SWAIGFunction(
function: str,
description: str,
parameters: Dict[str, Any],
**kwargs
)

Parameters:

  • function (str): Function name
  • description (str): Function description
  • parameters (Dict[str, Any]): JSON schema for parameters
  • **kwargs: Additional SWAIG properties

Usage

from signalwire_agents.core.swaig_function import SWAIGFunction

# Create SWAIG function
swaig_func = SWAIGFunction(
function="get_weather",
description="Get current weather",
parameters={
"type": "object",
"properties": {
"location": {"type": "string", "description": "City name"}
},
"required": ["location"]
},
secure=True,
fillers={"en-US": ["Checking weather..."]}
)

# Register with agent
agent.register_swaig_function(swaig_func.to_dict())

SWMLService Class

Base class providing SWML document generation and HTTP service capabilities. AgentBase extends this class.

Key Methods

get_swml_document() -> Dict[str, Any]

Generate the complete SWML document for the service.

handle_request(request_data: Dict[str, Any]) -> Dict[str, Any]

Handle incoming HTTP requests and generate appropriate responses.

EphemeralAgentConfig Class

Used in dynamic configuration callbacks to modify agent settings per-request.

Available Methods

All the same configuration methods as AgentBase:

  • add_language(), add_hint(), set_params()
  • prompt_add_section(), set_global_data()
  • add_function_include(), set_native_functions()

Usage:

def dynamic_config(query_params, headers, body, config):
# Configure based on request
if query_params.get("lang") == "es":
config.add_language("Spanish", "es-ES", "nova.luna")

# Customer-specific configuration
customer_id = headers.get("X-Customer-ID")
if customer_id:
config.set_global_data({"customer_id": customer_id})
config.prompt_add_section("Customer Context", f"You are helping customer {customer_id}")

agent.set_dynamic_config_callback(dynamic_config)

Environment Variables

The SDK supports various environment variables for configuration:

Authentication

  • SWML_BASIC_AUTH_USER: Basic auth username
  • SWML_BASIC_AUTH_PASSWORD: Basic auth password

SSL/HTTPS

  • SWML_SSL_ENABLED: Enable SSL (true/false)
  • SWML_SSL_CERT_PATH: Path to SSL certificate
  • SWML_SSL_KEY_PATH: Path to SSL private key
  • SWML_DOMAIN: Domain name for SSL

Proxy Support

  • SWML_PROXY_URL_BASE: Base URL for proxy server

Skills Configuration

  • GOOGLE_SEARCH_API_KEY: Google Custom Search API key
  • GOOGLE_SEARCH_ENGINE_ID: Google Custom Search Engine ID
  • DATASPHERE_SPACE_NAME: DataSphere space name
  • DATASPHERE_PROJECT_ID: DataSphere project ID
  • DATASPHERE_TOKEN: DataSphere access token

Usage

import os

# Set environment variables
os.environ["SWML_BASIC_AUTH_USER"] = "admin"
os.environ["SWML_BASIC_AUTH_PASSWORD"] = "secret"
os.environ["GOOGLE_SEARCH_API_KEY"] = "your-api-key"

# Agent will automatically use these
agent = AgentBase("My Agent")
agent.add_skill("web_search", {
"search_engine_id": "your-engine-id"
# api_key will be read from environment
})

Complete Example

Here's a comprehensive example using multiple SDK components:

from signalwire_agents import AgentBase, SwaigFunctionResult, DataMap
from signalwire_agents.core.state import FileStateManager

class ComprehensiveAgent(AgentBase):
def __init__(self):
# Initialize with state management
state_manager = FileStateManager(
storage_dir="./agent_state",
expiry_hours=48
)

super().__init__(
name="Comprehensive Agent",
enable_state_tracking=True,
state_manager=state_manager,
auto_answer=True,
record_call=True
)

# Configure voice and language
self.add_language("English", "en-US", "rime.spore",
speech_fillers=["Let me check...", "One moment..."])

# Add speech recognition hints
self.add_hints(["SignalWire", "customer service", "technical support"])

# Configure AI parameters
self.set_params({
"ai_model": "gpt-4.1-nano",
"end_of_speech_timeout": 800,
"temperature": 0.7
})

# Add skills
self.add_skill("datetime")
self.add_skill("math")
self.add_skill("web_search", {
"api_key": "your-google-api-key",
"search_engine_id": "your-engine-id",
"num_results": 3
})

# Set up structured workflow
self._setup_contexts()

# Add custom tools
self._register_custom_tools()

# Set global data
self.set_global_data({
"company_name": "Acme Corp",
"support_hours": "9 AM - 5 PM EST",
"version": "2.0"
})

def _setup_contexts(self):
"""Set up structured workflow contexts"""
contexts = self.define_contexts()

# Greeting context
greeting = contexts.add_context("greeting")
greeting.add_step("welcome") \
.set_text("Hello! Welcome to Acme Corp support. How can I help you today?") \
.set_step_criteria("Customer has explained their issue") \
.set_valid_steps(["next"])

greeting.add_step("categorize") \
.add_section("Current Task", "Categorize the customer's request") \
.add_bullets("Categories", [
"Technical issue - use diagnostic tools",
"Billing question - transfer to billing",
"General inquiry - handle directly"
]) \
.set_functions(["transfer_to_billing", "run_diagnostics"]) \
.set_step_criteria("Request categorized and action taken")

# Technical support context
tech = contexts.add_context("technical_support")
tech.add_step("diagnose") \
.set_text("Let me run some diagnostics to identify the issue.") \
.set_functions(["run_diagnostics", "check_system_status"]) \
.set_step_criteria("Diagnostics completed") \
.set_valid_steps(["resolve"])

tech.add_step("resolve") \
.set_text("Based on the diagnostics, here's how we'll fix this.") \
.set_functions(["apply_fix", "schedule_technician"]) \
.set_step_criteria("Issue resolved or escalated")

def _register_custom_tools(self):
"""Register custom DataMap tools"""

# Customer lookup tool
lookup_tool = (DataMap("lookup_customer")
.description("Look up customer information")
.parameter("customer_id", "string", "Customer ID", required=True)
.webhook("GET", "https://api.company.com/customers/${args.customer_id}",
headers={"Authorization": "Bearer YOUR_TOKEN"})
.output(SwaigFunctionResult("Customer: ${response.name}, Status: ${response.status}"))
.error_keys(["error"])
)

self.register_swaig_function(lookup_tool.to_swaig_function())

# System control tool
control_tool = (DataMap("system_control")
.description("Control system functions")
.parameter("action", "string", "Action to perform", required=True)
.parameter("target", "string", "Target system")
.expression("${args.action}", r"restart|reboot",
SwaigFunctionResult("Restarting ${args.target}")
.add_action("restart_system", {"target": "${args.target}"}))
.expression("${args.action}", r"status|check",
SwaigFunctionResult("Checking ${args.target} status")
.add_action("check_status", {"target": "${args.target}"}))
)

self.register_swaig_function(control_tool.to_swaig_function())

@AgentBase.tool(
description="Transfer call to billing department",
parameters={"type": "object", "properties": {}}
)
def transfer_to_billing(self, args, raw_data):
"""Transfer to billing with state tracking"""
return (SwaigFunctionResult("Transferring you to our billing department")
.update_global_data({"last_action": "transfer_to_billing"})
.connect("billing@company.com", final=False))

def on_summary(self, summary, raw_data):
"""Handle conversation summaries"""
print(f"Conversation completed: {summary}")
# Could save to database, send notifications, etc.

# Run the agent
if __name__ == "__main__":
agent = ComprehensiveAgent()
agent.run()

This concludes the complete API reference for the SignalWire AI Agents SDK. The SDK provides a comprehensive framework for building sophisticated AI agents with modular capabilities, structured workflows, persistent state, and seamless deployment across multiple environments.